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Abstract

Metagenomics has expanded our knowledge of microbial diversity, but contaminant sequences are
frequently accidentally included in metagenome-assembled genomes. Genome contamination is
often estimated by the presence of marker genes that are biased against detecting contaminants
lacking these sequences. Further, most contamination detection tools do not remove contamination.
We present charcoal, a tool that rapidly identi�es and removes contamination in metagenome-
assembled genomes using k-mer based methods. K-mers are nucleotide sequences of length k.
Su�ciently long k-mers are usually speci�c to a taxonomic lineage. Taking advantage of this property
of k-mers, charcoal identi�es majority and minority lineages for each contiguous sequence in a
genome and removes contiguous sequences belonging to minority lineages when those lineages
occur below a taxonomic threshold (by default, order). Applying charcoal to the Genome Taxonomy
Database rs207, we found approximately XX% of genomes in GTDB were contaminated, with
contamination broadly distributed across species and occurring in representative and RefSeq
genomes. Genomes with longer contiguous sequences were less likely to be contaminated. Our
results show concordance with CheckM on detecting the presence of contamination in a genome.
Charcoal is a snakemake work�ow developed around the tool sourmash. It is available at
github.com/dib-lab/charcoal, and is pip installable.

Introduction
Metagenomic sequencing has expanded our knowledge of microbial communities and their diversity
[1,2,3]. De novo metagenome analysis has generated thousands of draft genomes, termed
metagenome-assembled genomes (MAGs), from organisms from diverse environments [2,4,5,6].
Recently, large-scale re-analysis e�orts have led to a rapid expansion in draft genomes in public
repositories like the European Nucleotide Archive [6] and the Joint Genome Institute IMG/M [2].
Increased observation of draft genomes across the tree of life better enables researchers to
contextualize new sequencing data and the roles that microorganisms play in diverse metabolic
processes [7,8].

MAG inference relies on assembly and binning of metagenomic sequencing data. Assembly produces
long contiguous sequences by identifying overlaps between short sequencing reads, while binning
groups assembled sequences into MAGs using read coverage and tetramernucleotide frequency. Both
processes are subject to biases that can reduce the completeness of or increase the contamination in
a MAG: low sequencing coverage or high genomic variation causes short read assemblers to break
contiguous sequences into shorter pieces (CITE), which decreases the signal for and accuracy of
binning (CITE). Commonly, the completeness and purity of MAGs is estimated through the presence
and sequence composition of single-copy marker genes [9] [10], with MAGs that reach >90%
completeness and <5% contamination considered high quality [9]. Single-copy marker genes are sets
of genes that are present once in a genome of almost all members of a taxonomic group [9,11]. Using
these genes to estimate contamination leads to two important biases. First, given the assumption that
marker genes are universally present in genomes, if a marker gene resides on a contaminant
sequence but no other sequence for that marker gene is present in the genome, it will not be
detected as contamination [9,12]. When a MAG is substantially complete, this may lead to a small
underestimation in contamination (~3% [9]), but as completeness decreases, contamination may be
substantially underestimated [12]. Second, contiguous sequences which do not contain marker
sequences are not included among contamination estimates [9] (note checkm called out plasmids and
phages for this bias speci�cally).

Given these biases, methods that do not rely solely on marker genes may be better suited for
contamination estimation. Many tools have recently been developed that rely on di�erent strategies



for detecting contamination [13]. GUNC expands beyond marker genes and uses the full complement
of genes in a genome to identify contiguous sequences that fall outside of the predicted lineage [14].
It estimates the distribution of taxonomic assignments within and across contiguous sequences to
identify contaminants even among sequences that are poorly taxonomically labelled [14].
Conterminator detects cross-kingdom contamination using all-vs-all alignment and is geared toward
contamination detection in large collections of genomes (e.g. databases) [15]. Sequences are
considered contaminants when at least 100 nucleotides and no more than 20 kb share a sequence
identity of at least 90% in genomes that originate from di�erent kingdoms [15]. In addition,
conterminator �nds contamination in protein sequences by identifying protein clusters that contain
sequences from cross-kingdom members [15].

Removing contamination is a separate problem from estimating its extent. Tools like Re�neM [7],
MAGPpurify [16], and BlobTools [17] rely on a combination of GC content, tetramernucleotide
frequency, read coverage, phylogenetic or clade markers, conspeci�c sequences, and known
contaminants to �ag contaminant contiguous sequences for removal. The inclusion of read coverage
pro�les necessitates the use of the original sequencing reads to produce coverage pro�les in BAM
format for the genomes. Given that sequencing data and BAM �les are usually orders of magnitude
larger than genome sequences, this requirement limits the utility of such approaches, especially for
large-scale genome databases. Tools like GUNC are poised for contamination removal without relying
on read coverage pro�les, but as of yet such approaches are unimplemented [14].

Long k-mers capture relatedness between organisms, where a k=31 captures species-level similarity
[18]. K-mers o�er an alternative metric to identify contamination, especially in sequences lacking
marker genes. Here we describe Charcoal, an automated method for �ltering contaminant contiguous
sequences from MAGs. We show… We show… We envisage that charcoal will complement marker
gene-based approaches for contamination estimation, removing problematic sequences before they
are further analyzed or propagated in public databases.

Methods
Overview

Figure 1:  Summary of steps used to decontaminate genomes with charcoal. In the �rst stage of the pipeline,
contamination detection occurs by comparing the taxonomic assignment of each contig in a genome against all other
contigs. Contigs with inconsistent taxonomy are �agged as contaminants, by default if they di�er at the order level or



above. The results of this step are summarized to report the contaminating genomes, the number of contaminant
contigs and base pairs at each level of taxonomy, and other metrics like the fraction of the genome that was identi�able
and the fraction that was assignable to the majority lineage. The outputs of the �rst stage of the pipeline can then be
used in any of three additional reporting steps. First, contamination can be veri�ed by aligning the contaminant contigs
against their identi�ed matching reference genome, and the mappings can be visualized. Second, an html document can
be produced that gives an overview of the contamination in each genome. Lastly, the contaminant contigs can be
separated out from the non-contaminant contigs, writing two separate FASTA �les per genome.

Charcoal provides an automated method to detect, visualize, and remove bacterial and archaeal
contamination in genomes (Figure 1). To identify contamination, charcoal �rst creates a FracMinHash
sketch for each contiguous sequence (“contig”) in an input genome. Charcoal then identi�es all
genomes in a database (“reference genomes”) that share sequence overlap with the input genome
using sourmash prefetch . Subsequent operations subset the original database to include only the
genomes identi�ed by prefetch , reducing search volumes. Using these matches, charcoal uses
sourmash gather  to identify the minimum set of genomes that cover (or contain) the k-mers in each
contig [19]. Charcoal then determines the taxonomic lineage of each contig using a lineage
spreadsheet that records the taxonomy of each reference genome in the database; the taxonomic
assignment occurs at the lowest common ancestor of all taxonomic assignments given to a contig. If
there is an exact match between the input genome and a genome in the database, this match is
removed to allow decontamination to continue.

Charcoal compares the taxonomic lineage of each contig against the lineage of the input genome. If
the contig has a di�erent lineage before or at the con�gured taxonomic rank (order by default) than
that of the majority lineage, the contig is considered a contaminant. For each contig, charcoal reports
the fraction of identi�ed hashes (total and to each major and minor lineage), an estimate of
contaminated base pairs (at each taxonomic rank match), as well as the fraction of contigs and base
pairs unable to be identi�ed.

The input genome lineage can be user-provided, or it can be determined by charcoal via majority vote
of all lineages assigned to all contigs. If the lineage is determined by charcoal, by default a minimum
10% of the input genome must have been assigned a taxonomic lineage, and 20% of assigned
sequences must match to the majority lineage. If these speci�cations are not met, charcoal will not
decontaminate the input genome unless the user speci�es a lineage. The user can optionally specify a
lineage (e.g. d__Eukaryota), and charcoal will remove contigs that have a lineage di�erent from the
user-speci�ed one. This allows charcoal to remove contigs from an input genome when some contigs
from that genome occur in the database and when the input genome is not related to anything in a
database. Charcoal reports whether the provided lineage agrees with k-mer classi�cation at or above
the genus level.

After the initial stage of contaminant detection, charcoal can perform additional tasks to verify,
summarize, or remove the contaminant sequences. Contaminant veri�cation downloads the
reference genome sequence for any genome that was detected among the input genome contigs and
aligns the contigs against those genomes using mashmap [20]. Contaminant removal separates
“clean” from “dirty” contigs and outputs each set into a FASTA �le. Importantly, charcoal will not
remove a contig if it is unidenti�able, whether it is too short to be sketched or does not contain
sequences in the reference database. While these contigs could still be contaminants, charcoal
assumes contigs are clean for which it has no information. Therefore, charcoal will fail to detect
contamination for very short contigs which contain no selected k-mers, as well as contigs with novel
DNA content. Lastly, charcoal has a report feature that summarizes and visualizes the taxonomic
lineages detected in each input genome as well as the alignments between the input genome and
reference genomes.

Sourmash prefetch  is the most compute intensive step in the decontamination process. When
using the GTDB rs207 representative database, this step does not exceed 8GB of RAM.



statement that charcoal is database dependent (probably can go in last paragraph with RAM/CPU
considerations)

Availability and dependencies

Charcoal is written in python3 and can be installed via pip as charcoal-bio. The core algorithms
(contaminant detection and removal) depend on sourmash and snakemake. Contaminant veri�cation
depends on lxml and mashmap [20]. Reporting depends on mummer, papermill, notebook, and plotly
[21]. The source code is available at github.com/dib-lab/charcoal. ZENODO DOI.

Datasets and benchmarking

We �rst use charcoal to decontaminate GTDB rs207.

Results
Charcoal detected and removed contamination from roughly
one quarter of GTDB genomes

Figure 2:  Charcoal identi�ed contamination in approximately one quarter of GTDB rs207 genomes, distributed
generally across di�erent types of genomes. A) Bar plot depicting the number of genomes in GTDB contaminated at
the order level. B) Bar plot separating genomes in GTDB by their inclusion in NCBI’s RefSeq. Both GenBank and RefSeq
genomes are contaminated. C) Bar plot separating representative genomes in GTDB from non-representative genomes.
While some representative genomes are contaminated, non-representative genomes are more likely to be
contaminated. D) Violin plots depicting the mean contig length within genomes in GTDB, separated by contamination
pro�le. Genomes with longer contigs are less likely to be contaminated. On average, the contigs in contaminated
genomes were 380,504 base pairs shorter than contigs in non-contaminated genomes. E) Bar plot that separates



genomes by NCBI category which speci�es where source material was derived from. F) Bar plot depicting the number of
genomes in each order, colored by contamination status. Genomes are grouped by taxonomic lineage up to the order
level.

Using charcoal to detect and remove contamination, approximately 26% of GTDB rs207 genomes
were contaminated at the order level or above (Figure 2 A). Contamination was distributed across
GenBank and RefSeq genomes (Figure 2 B), GTDB representative and non-representative genomes
(Figure 2 C), isolate, single cell, and metagenome-derived genomes (Figure 2 E), and taxonomic
orders (Figure 2 F). However, contamination was more likely to be identi�ed in genomes with shorter
contigs (Figure 2 D) and in non-representative GTDB genomes (Figure 2 C).

TODO: run prodigal/bakta on dirty contigs, comment on number of genes/average functional
potential added to contaminated genomes by contamination.

Charcoal and CheckM identify the same set of not
contaminated genomes

Charcoal is more conservative than CheckM contamination estimation at the order level. whereas
80.2% of genomes are estimated to have some contamination using CheckM. + Both tools agree on
the majority of genomes with no contamination

At the family level, charcoal identi�ed contamination in XX% of genomes, suggesting that adjusting
taxonomy may improve agreement with checkm.

Do plot – at what % checkm contam best overlaps with order level charcoal?

run checkm on clean

Databases

gtdb rs207 reps vs gtdb rs202 reps
gtdb rs202 reps vs gtdb rs202 full (replace evnetually with rs207)

short contigs missed
ram considerations
future development: species-level database

old results outline:

charcoal vs. checkm
charcoal vs. checkm: mgnify, tara
prokka on charcoal dirty

charcoal vs. re�neM and magpurify
veri�cation of contamination/contam case studies

case studies
user-provided lineages
cDBG/spacegraphcats?
user-speci�ed lineages

Discussion
Bene�ts and drawbacks of charcoal.



Commonly, the completeness and contamination of MAGs is estimated through the presence and
sequence composition of single-copy marker genes [9,10], with MAGs that reach >90% completeness
and <5% contamination considered high quality [9]. Using these genes to estimate contamination
leads to two important biases. First, given the assumption that marker genes are universally present
in genomes, if a marker gene resides on a contaminant sequence but no other sequence for that
marker gene is present in the genome, it will not be detected as contamination [9,12]. When a MAG is
substantially complete, this may lead to a small underestimation in contamination (~3% [9]), but as
completeness decreases, contamination may be substantially underestimated [12]. Second,
contiguous sequences which do not contain marker sequences are not included among
contamination estimates [9]. Charcoal avoids these pitfalls by using k-mers, which are sampled evenly
across the genome [19]. We envisage charcoal acting as a complementary analysis tool to CheckM.

While charcoal avoids the above biases, it is itself biased against detecting contamination in very short
contigs. By default, a minimum of three k-mers must be taxonomically annotated on a contig for a
contig to be removed; because contigs are �rst sketched, many short contigs will not contain three k-
mers.

Future work

strain heterogeneity estimation or strain insertion in newick tree using prefetch & clean results
completeness estimation, potentially via comparison to conspeci�cs via genome size
database with eukaryotic sequences
estimation via protein sequences for divergent organisms not well represented in databases

Notes

fastani is an accepted way to do average nucleotide identity calculate, and it relies on k-mers.
from checkm paper: > Bias in genome quality estimates: Quality estimates based on individual
marker genes or collocated marker sets exhibit a bias resulting in completeness being
overestimated and contamination being underestimated. This bias is the result of marker genes
residing on foreign DNA that are otherwise absent in a genome being mistakenly interpreted as an
indication of increased completeness as opposed to contamination.
we don’t deal with strain heterogeneity, as this occurs below the species-level aggregation in the
LCA
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